Polyhedral Painting with Group Averaging
نویسندگان
چکیده
منابع مشابه
Polyhedral computational geometry for averaging metric phylogenetic trees
This paper investigates the computational geometry relevant to calculations of the Fréchet mean and variance for probability distributions on the phylogenetic tree space of Billera, Holmes and Vogtmann, using the theory of probability measures on spaces of nonpositive curvature developed by Sturm. We show that the combinatorics of geodesics with a specified fixed endpoint in tree space are dete...
متن کاملHeavy Flavor Averaging Group (hfag)
This article reports world averages for measurements on b-hadron properties obtained by the Heavy Flavor Averaging Group (HFAG) using the available results as of summer 2004 conferences. In the averaging, the input parameters used in the various analyses are adjusted (rescaled) to common values, and all known correlations are taken into account. The averages include b-hadron lifetimes, B-oscill...
متن کاملRobust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملInvariant Texture Classification Using Group Averaging with Relational Kernel Functions
In this paper we propose a novel method for the construction of textural features which are invariant with respect to 2D Euclidean motion and strictly increasing grey scale transformations. Our approach is based on a group averaging technique with relational kernel functions. In order to allow for comparison the evaluation of our approach was done on two image data sets taken from the Brodatz a...
متن کاملGroup Averaging for de Sitter free fields
Perturbative gravity about global de Sitter space is subject to linearizationstability constraints. Such constraints imply that quantum states of matter fields couple consistently to gravity only if the matter state has vanishing de Sitter charges; i.e., only if the state is invariant under the symmetries of de Sitter space. As noted by Higuchi, the usual Fock spaces for matter fields contain n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PRIMUS
سال: 2015
ISSN: 1051-1970,1935-4053
DOI: 10.1080/10511970.2015.1110218